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Abstract: In this paper, a predator-prey model with mutual interference and delays is studied by utilizing the
comparison theorem and Lyapunov second method. Some sufficient conditions for uniform persistence and global
attractivity of positive periodic solution of the model are obtained. It is very interesting that the results obtained are
related to delays, especially based on the mutual interference constant. Furthermore, it is the first time that such a
model is considered. An example is illustrated to verify the feasibility of the results in the last part.
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1 Introduction
Recently, the following predator-prey(PP for short)
model with mutual interference,{

ẋ = x(a1(t)− b1(t)x)− φ1(t, x)y
m,

ẏ = y (−a2(t)− b2(t)y) + φ2(t, x)y
m,

where m ∈ (0, 1] is the mutual interference constant,
which was introduced by Hassell in 1971 (see [1–3]
for more details), has been studied by some authors,
such as Wang (2008-2010), Lin (2009), Wang (2010),
Chen (2009) and Wu (2010), see [4–10] for more de-
tails. They investigated the existence and stability of
periodic or almost periodic solutions of some special
cases of the above model, and the models they con-
sidered are all ordinary differential systems or differ-
ence systems. It was pointed by Kuang (1993) [11]
that any model of species dynamics without delays is
an approximation at best, more detailed arguments on
the importance and usefulness of time-delays in real-
istic models may also be found in the classical book-
s of Macdonald (1989) [12] and Gopalsamy (1992)
[13]. There are many papers on study of dynamics of
delayed population models, see[18,19,22-26] and the
references cited therein for more details. But there are
few literatures considering time-delays in PP model
with mutual interference.

Motivated by the above reasons, in this paper we
investigate a PP model with mutual interference and

∗Corresponding author.

delays in the form:
ẋ(t) =x(t)(a1(t)− b1(t)x(t− τ1(t))

− c1(t)y
m(t− τ2(t))),

ẏ(t) = y(t)(−a2(t)− b2(t)y(t− τ3(t))

+ c2(t)x(t)y
m−1(t)),

(1)

where x(t), y(t) denote the size of prey and predator
at time t, respectively; m ∈ (0, 1] is mutual inter-
ference constant; ai(t), bi(t) and ci(t)(i = 1, 2) are
continuous and bounded above and below by positive
constants on [0,+∞), τi(t)(i = 1, 2, 3) are nonneg-
ative, bounded and continuous functions on [0,+∞).
If set τ = sup{τi(t) : t ∈ [0,+∞), i = 1, 2, 3}, then
we get τ ∈ [0,+∞).

Considering the application of model (1) to popu-
lation dynamics, we assume that all positive solutions
of model (1) satisfy the following initial conditions,{

x(θ) = φ(θ), θ ∈ [−τ, 0], φ(0) = φ0 > 0,
y(θ) = ψ(θ), ψ ∈ [−τ, 0], ψ(0) = ψ0 > 0,

(2)
where φ and ψ are given nonnegative and bounded
continuous functions on [−τ, 0].
Remark 1 If m = 1, i.e., there is no mutual inter-
ference between preys and predators, then model (1)
transforms to the classical PP model:

ẋ(t) =x(t)(a1(t)− b1(t)x(t− τ1(t))

− c1(t)y(t− τ2(t))),

ẏ(t) = y(t)(−a2(t)− b2(t)y(t− τ3(t))

+ c2(t)x(t)),
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which has been extensively studied with or without de-
lays, such as existence of periodic solutions, perma-
nence, stability of equilibria and so on, see [14–24]
and the references cited therein.

Remark 2 If we neglect the influence of delays in
model (1), i.e., τi(t) ≡ 0, i = 1, 2, 3, then model (1)
reduces to the following ordinary differential popula-
tion system:{
ẋ(t) = x(t)(a1(t)− b1(t)x(t)− c1(t)y

m(t)),

ẏ(t) = y(t)(−a2(t)− b2(t)y(t) + c2(t)x(t)y
m−1).

(3)
In paper [5], we studied the existence and global
asymptotic stability of positive periodic solution of
model (3) with c2(t) = kc1(t), and in paper [6], we
investigated the permanence, and global asymptotic
stability of the positive solutions of model (3).

The aim of this paper is to establish sufficient con-
ditions for the uniform persistence of model (1) with
m ∈ (0, 1), and present sufficient conditions for the
global attractivity of model (1) with m ∈ (0, 1).

The structure of the paper is: In section 2, some
useful lemmas and definitions are given. In section
3, some main results on the uniform persistence and
the existence of positive periodic solutions for model
(1) are established. In section 4, an example is giv-
en to verify the feasibility of our results by simula-
tion. The significance is that we verify that the mutual
interference constant m has intrinsic effect on the u-
niform persistence, the existence of positive periodic
solutions and the global attractivity of model (1).

2 Lemmas and definitions
In this section, we give some important lemmas and
definitions which will be used in next sections.

For the sake of convenience, we let fL =
inft∈E f(t), f

U = inft∈E f(t), where f is a contin-
uously bounded function defined on interval E, and
denote by φ−1

i (t) the inverse function of φi(t) =
t− τi(t), i = 1, 2, 3, respectively.

Lemma 3 ( See [23] ) If a > 0, b > 0 and ż(t) >
(6) z(t)(b − a z(t)) for t > 0, z(0) > 0, then the
following inequality hold:

z(t) > (6)
b

a

[
1 +

(
b

a z(0)
− 1

)
exp{−b t}

]−1

.

Lemma 4 If a > 0, b > 0, ż(t) > zm(t)(b −
az1−m(t)) with 0 < m < 1 and z(0) > 0, then for
any small constant ε > 0 we have

z(t) > (b/a)1/(1−m) − ε for t > T,

where T is a large enough positive constant.

Proof: It follows from

ż(t) > zm(t)(b− az1−m(t))

that

d(z1−m)(t)/dt > (1−m)(b− az1−m(t)).

From Lemma 3 we get

z1−m(t) > b/a+
(
z1−m(0)− b/a

)
e−a(1−m)t

for t > 0 i.e.,

z(t) >
[
b/a+

(
z1−m(0)− b/a

)
e−a(1−m)t

]1/(1−m)

for t > 0. Then for any small positive constant ε there
exists a positive constant T such that

z(t) > (b/a)1/(1−m) − ε for t > T.

⊓⊔

Definition 5 Model (1) is said to be uniformly persis-
tent if there exists a compact region D ⊆ IntR2 such
that every solution (x(t), y(t))⊤ of model (1) with ini-
tial condition (2) eventually enters and remains in re-
gion D.

Definition 6 Model (1) is called global attractivity if
for any positive solutions (x(t), y(t)), (x0(t), y0(t)),
lim

t→+∞
(|x(t)− x0(t)|+ |y(t)− y0(t)|) = 0.

3 Main results

In this section, we will present some sufficient con-
ditions on uniform persistence, existence of positive
periodic solutions and global attractivity of model (1),
respectively.

3.1 Uniform persistence and positive period-
ic solutions

Theorem 7 If the following conditions hold:
(1) K1 := (a1 − c1M

m
2 )L > 0,

(2) K2 :=
(
c2M3M

m−1
2 − a2

)L
> 0 or

K3 :=
(
c2M3 − b2M

2−m
2

)L
> 0.

Then model (1) is uniformly persistent.

Proof: It follows from model (1)-(2) that{
x(t)
x(0) = e

∫ t
0 (a1(s)−b1(s)x(s−τ1(s))−c1(s)ym(s−τ2(s)))ds,

y(t)
y(0) = e

∫ t
0 (−a2(s)−b2(s)y(s−τ3(s))+c2(s)x(s)ym−1(s))ds,
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which together with the positivity of (x(0), y(0))
yields the existence of positive solution (x(t), y(t))
of model (1)-(2).

Now we estimate the eventually upper bounds of
all positive solution (x(t), y(t)) of model (1). From
the first equation of model (1), we get

ẋ(t) 6 x(t)
(
aU1 − bL1 x(t− τ1(t))

)
,

it follows from [26, Lemma 2.3] that there exists con-
stant T1 > 0 such that

x(t) 6 aU1
bL1

exp{bL1 τU1 } :=M1 for t > T1. (4)

Similarly, from the second equation of model (1)
we get

d(y1−m(t))

d t
6 (1−m)

(
cU2 M1 − aL2 y

1−m(t)
)
.

This inequality and Lemma 3 yields

y(t) 6
{
cU2 M1

aL2

[
1 +

(
cU2 M1

aL2 y
1−m(0)

− 1

)
× exp

{
(m− 1) cU2 M1 t

}]−1} 1
1−m

.

Note that exp
{
(m− 1) cU2 M1 t

}
→ 0 for t → +∞,

which yields that, for any small constant ε0 > 0 there
exists a constant T2 > 0 such that, for t > T2

y(t) 6
(
cU2 M1

aL2
+ ε0

) 1
1−m

:=M2. (5)

We now estimate the eventually lower bounds of
all positive solution (x(t), y(t)) of system (1). From
(5) and the first equation of model (1) we get

ẋ(t) > x(t)
[
(a1 − c1M

m
2 )L − bU1 x(t− τ1(t))

]
.

Condition (1) and [26, Lemma 2.4] imply that, for any
small constant ε1 > 0 there is a T3 > 0 such that

x(t) >M3 for t > T3, (6)

where M3 = min
{

K1

bU1
e(K1−bU1 M1)τU1 , K1

bU1
− ε1

}
.

The second equation of model (1) implies

ẏ(t) > y(t)
[(
c2M3M

m−1
2 − a2

)L − bU2 y(t− τ3(t))
]
.

So from [26, Lemma 2.4] and condition (2) we know
that for any small constant ε2 > 0 there must exist
constant T4 > 0 such that

y(t) >M4 for t > T4, (7)

where M4 = min
{

K2

bU2
e(K2−bU2 M2)τU3 , K2

bU2
− ε2

}
.

On the other hand, from the second equation of
system (1) one can obtain

ẏ(t) > y(t)
[(
c2M3 − b2M

2−m
2

)L − aU2 y
1−m(t)

]
.

Thus Lemma 4 and assumption (3) yield that, for any
small constant ε3 > 0 there is a T5 > 0 such that

y(t) >
(
K3

aU2

) 1
1−m

− ε3 :=M5 for t > T5. (8)

Set T = max16i65{Ti}, M6 = max{M4,M5}
and D = {(u, v)|M3 6 u 6 M1, M6 6 v 6 M2},
then (4)-(8) yields (x(t), y(t)) ⊆ D for t > T. Thus
(x(t), y(t)) is uniformly persistent. ⊓⊔

Remark 8 If all coefficients in model (1) are contin-
uously periodic functions, i.e., it is a periodic sys-
tem, then Theorem 7 and Brouwer fixed point theorem
yields the following result.

Theorem 9 If model (1) is a ω−periodic system and
condition (1)-(2) in Theorem 7 holds, and all devi-
ating arguments τi(t)(i = 1, 2, 3) are continuous
ω−periodic functions, then model (1) has at least one
positive ω−periodic solution.

3.2 Global attractivity

In this section we will present some sufficient condi-
tions for the global asymptotic stability of model (1).

Theorem 10 Assume that all conditions in Theorem 7
hold, and further assume that the following conditions
hold:

[A1] τi, i = 1, 2, 3 are continuously differen-
tiable on [0,+∞) and inft>0(1− τ̇i(t)) > 0;

[A2] There exist positive constants α and β such
that lim inf

t→+∞
{Ci(t), i = 1, 2, 3} > 0, where

C1(t) =αb1(t)− β c2(t)M
m−1
2 − α(a1(t) +M1b1(t)

+Mm
2 c1(t))

∫ φ−1
1 (t)

t
b1(l)dl

− βM2M
m−1
6 c2(t)

∫ φ−1
3 (t)

t
b2(l)dl

− αM1
b1(φ

−1
2 (t))

1− τ̇2(φ
−1
2 (t))

∫ φ−1
1 (φ−1

2 (t))

φ−1
2 (t)

b1(l)dl,
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C2(t) = b2(t)−M3M
m−2
6 c2(t)− (a2(t) +M2b2(t)

+M1M
m−1
6 c2(t))

∫ φ−1
3 (t)

t
b2(l)dl

−M2
b2(φ

−1
3 (t))

1− τ̇3(φ
−1
3 (t))

∫ φ−1
3 (φ−1

3 (t))

φ−1
3 (t)

b2(l)dl,

C3(t) =
βM3c2(t)

M2
− αc1(φ

−1
2 (t))

1− τ̇2(φ
−1
2 (t))

×(
1 +M1b1(φ

−1
2 (t))

∫ φ−1
1 (φ−1

2 (t))

φ−1
2 (t)

b1(l)dl

)
.

Then system (1)-(2) is globally attractive.

Proof: Suppose (x0(t), y0(t)) and (x(t), y(t)) are any
two positive solutions of model (1)-(2), by Theorem 7
one know that there exists T > 0 such that, for t > T ,

M3 6 x0(t), x(t) 6M1; M6 6 y0(t), y(t) 6M2.

Define

V1(t) = α |lnx(t)− lnx0(t)|+β |ln y(t)− ln y0(t)| ,

where α, β are positive constants. Along system (1)
we get its Dini derivative as follows,

D+V1(t)|(1)

=α sgn(x(t)− x0(t))

{
−b1(t)[x(t)− x0(t)]

− c1(t)[y
m(φ2(t))− ym0 (φ2(t))] + b1(t)

×
∫ t

φ1(t)
(ẋ(s)− ẋ0(s))ds

}
+ β sgn(y(t)− y0(t))

×
{
−b2(t)[y(t)− y0(t)] + c2(t)[x(t)y

m−1(t)

− x0(t)y
m−1
0 (t)] + b2(t)

∫ t

φ3(t)
(ẏ(s)− ẏ0(s))ds

}
6− αb1(t)|x(t)− x0(t)| − βb2(t)|y(t)− y0(t)|

+ αc1(t)|ym(φ2(t))− ym0 (φ2(t))|+ βc2(t)

× sgn(y(t)− y0(t))[x(t)y
m−1(t)− x0(t)y

m−1
0 (t)]

+ αb1(t) sgn(x(t)− x0(t))

∫ t

φ1(t)
(ẋ(s)− ẋ0(s))ds

+ βb2(t) sgn(y(t)− y0(t))

∫ t

φ3(t)
(ẏ(s)− ẏ0(s))ds.

(9)

Meanwhile, we have

sgn(y(t)− y0(t))[x(t)y
m−1(t)− x0(t)y

m−1
0 (t)]

=sgn(y(t)− y0(t))[x(t)(y
m−1(t)

− ym−1
0 (t)) + ym−1

0 (t)(x(t)− x0(t))]

=− x(t)|ym−1(t)− ym−1
0 (t)|

+ ym−1
0 (t)sgn(y(t)− y0(t))(x(t)− x0(t))

6− x(t)|ym−1(t)− ym−1
0 (t)|+ ym−1

0 (t)|x(t)− x0(t)|,
(10)∫ t

φ1(t)
(ẋ(s)− ẋ0(s))ds

=

∫ t

φ1(t)
{x(s)[a1(s)− b1(s)x(φ1(s))

− c1(s)y
m(φ2(s))]− x0(s)[a1(s)− b1(s)x0(φ1(s))

− c1(s)y
m
0 (φ2(s)))]}ds

=

∫ t

φ1(t)
(x(s)− x0(s))[a1(s)− b1(s)x0(φ1(s))

− c1(s)y
m
0 (φ2(s))]ds+

∫ t

φ1(t)
x(s){b1(s)[x0(φ1(s))

− x(φ1(s))] + c1(s)[y
m
0 (φ2(s))− ym(φ2(s))]}ds

(11)
and∫ t

φ3(t)
(ẏ(s)− ẏ0(s))ds

=

∫ t

φ3(s)
{y(s)[−a2(s)− b2(s)y(φ3(s))

+ c2(s)x(s)y
m−1(s)]− y0(s)[−a2(s)

− b2(s)y0(φ3(s)) + c2(s)x0(s)y
m−1
0 (s)]}ds

=

∫ t

φ3(t)
(y(s)− y0(s))[−a2(s)− b2(s)y0(φ3(s))

+ c2(s)x0(s)y
m−1
0 (s)]ds+

∫ t

φ3(t)
y(s){−b2(s)

× [y(φ3(s))− y0(φ3(s))]

+ c2(s)[x(s)y
m−1(s)− x0(s)y

m−1
0 (s)]}ds

=

∫ t

φ3(t)
(y(s)− y0(s))[−a2(s)− b2(s)y0(φ3(s))

+ c2(s)x0(t)y
m−1
0 (s)]ds−

∫ t

φ3(t)
b2(s)y(s)[y(φ3(s))

− y0(φ3(s))]ds+

∫ t

φ3(t)
c2(s)y(s)[x(s)(y

m−1(s)

− ym−1
0 (s)) + ym−1

0 (s)(x(s)− x0(s))]ds.
(12)
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Substitution of (10)-(12) into (9) yields

D+V1(t)|(1)
6− αb1(t)|x(t)− x0(t)| − βb2(t)|y(t)− y0(t)|

+ αc1(t) |ym(φ2(t))− ym0 (φ2(t))|

+ βc2(t)(−x(t)|ym−1(t)− ym−1
0 (t)|

+ ym−1
0 (t)|x(t)− x0(t)|) + αb1(t)

×
{∫ t

φ1(t)
|x(s)− x0(s)|[a1(s)− b1(s)x0(φ1(s))

− c1(s)y
m
0 (φ2(s))]ds+

∫ t

φ1(t)
x(s)[b1(s)|x0(φ1(s))

− x(φ1(s))|+ c1(s)|ym0 (φ2(s))− ym(φ2(s))|]ds
}

+ βb2(t)

{∫ t

φ3(t)
|y(s)− y0(s)|[−a2(s)

− b2(s)y0(φ3(s)) + c2(s)x0(s)y
m−1
0 (s)]ds

+

∫ t

φ3(t)
b2(s)y(s)|y(φ3(s))− y0(φ3(s))|ds

+

∫ t

φ3(t)
c2(s)y(s)[−x(s)|ym−1(s)− ym−1

0 (s)|

+ ym−1
0 (s)|x(s)− x0(s))|ds

}
6
[
β c2(t)M

m−1
2 − αb1(t)

]
|x(t)− x0(t)|

− βb2(t)|y(t)− y0(t)| − βM3c2(t)|ym−1(t)

− ym−1
0 (t)|+ αc1(t) |ym(φ2(t))− ym0 (φ2(t))|

+ αb1(t)

{∫ t

φ1(t)
|x(s)− x0(s)|[a1(s) +M1b1(s)

+Mm
2 c1(s)]ds+M1

∫ t

φ1(t)
[b1(s)|x0(φ1(s))

− x(φ1(s))|+ c1(s)|ym0 (φ2(s))− ym(φ2(s))|]ds
}

+ βb2(t)

{∫ t

φ3(t)
|y(s)− y0(s)|

[
a2(s) +M2b2(s)

+
M1c2(s)

M1−m
6

]
ds+M2

∫ t

φ3(t)
b2(s)|y(φ3(s))

− y0(φ3(s))|ds−M6M3

∫ t

φ3(t)
c2(s)|ym−1(s)

−ym−1
0 (s)|ds+ M2

M1−m
6

∫ t

φ3(t)
c2(s)|x(s)− x0(s)|ds

}
.

(13)

Let

V2(t)

=α

∫ t

φ2(t)

c1(φ
−1
2 (s))

1− τ̇2(φ
−1
2 (s))

|ym(s)− ym0 (s)|ds

+ βM2M
m−1
4

∫ φ−1
3 (t)

t

∫ t

φ3(l)
b2(l)c2(s)|x(s)

− x0(s)|dsdl + α

∫ φ−1
1 (t)

t

∫ t

φ1(l)
b1(l)[a1(s)

+M1b1(s) +Mm
2 c1(s)]|x(s)− x0(s)|dsdl

+ αM1

∫ φ−1
1 (t)

t

∫ t

φ1(l)
b1(l)[b1(s)|x(φ2(s))

−x0(φ2(s))|+ c1(s)|ym(φ2(s))− ym0 (φ2(s))|]dsdl

+ β

∫ φ−1
3 (t)

t

∫ t

φ3(l)
b2(l)|y(s)− y0(s)|[a2(s)

+M2b2(s) +M1M
m−1
6 c2(s)]dsdl + βM2

×
∫ φ−1

3 (t)

t

∫ t

φ3(l)
b2(l)b2(s)|y(φ3(s))− y0(φ3(s))|dsdl,

then its derivative is as follows,

V ′
2(t)

=
αc1(φ

−1
2 (t))

1− τ̇2(φ
−1
2 (t))

|ym(s)− ym0 (t)| − αc1(t)

× |ym(φ2(t))− ym0 (φ2(t))|+ α[a1(t) +M1b1(t)

+Mm
2 c1(t)]

∫ φ−1
1 (t)

t
b1(l)dl |x(t)− x0(t)|

− αb1(t)

∫ t

φ1(t)
[a1(s) +M1b1(s) +Mm

2 c1(s)]

× |x(s)− x0(s)|ds+ αM1b1(t)

∫ φ−1
1 (t)

t
b1(l)dl

×
[
|x(φ2(t))− x0(φ2(t))|+ c1(t)|ym(φ2(s))

− ym0 (φ2(t))|
]
− αM1b1(t)

∫ t

φ1(t)
[b1(s)|x(φ2(s))

− x0(φ2(s))|+ c1(s)|ym(φ2(s))− ym0 (φ2(s))|]ds
+ β

[
a2(t) +M2b2(t) +M1M

m−1
6 c2(t)

]
×
∫ φ−1

3 (t)

t
b2(l)dl |y(t)− y0(t)| − βb2(t)
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×
∫ t

φ3(t)
|y(s)− y0(s)|[a2(s) +M2b2(s)

+M1M
m−1
6 c2(s)]ds+ βM2b2(t)

∫ φ−1
3 (t)

t
b2(l)dl

× |y(φ3(t))− y0(φ3(t))| − βM2b2(t)

∫ t

φ3(t)
b2(s)

× |y(φ3(s))− y0(φ3(s))|ds+ βM2M
m−1
6 c2(t)

×
∫ φ−1

3 (t)

t
b2(l)dl |x(t)− x0(t)|

− βM2M
m−1
6 b2(t)

∫ t

φ3(t)
c2(s)|x(s)− x0(s)|ds.

(14)
Define

V3(t)

=αM1

∫ t

φ2(t)

∫ φ−1
1 (φ−1

2 (s))

φ−1
2 (s)

b1(l)
b1(φ

−1
2 (s))

1− τ̇2(φ
−1
2 (s))

×
[
|x(s)− x0(s)|+ c1(φ

−1
2 (s))|ym(s)− ym0 (s)|

]
dlds

+ βM2

∫ t

φ3(t)

∫ φ−1
3 (φ−1

3 (s))

φ−1
3 (s)

b2(l)
b2(φ

−1
3 (s))

1− τ̇3(φ
−1
3 (s))

× |y(s)− y0(s)|dlds.

By simply calculating we get its derivative in the fol-
lowing form,

V ′
3(t)

=αM1

∫ φ−1
1 (φ−1

2 (t))

φ−1
2 (t)

b1(l)dl
b1(φ

−1
2 (t))

1− τ̇2(φ
−1
2 (t))

×
[
|x(t)− x0(t)|+ c1(φ

−1
2 (t))|ym(t)− ym0 (t)|

]
−αM1b1(t)

∫ φ−1
1 (t)

t
b1(l)dl[|x(φ2(t))− x0(φ2(t))|

+c1(t)|ym(φ2(t))− ym0 (φ2(t))|] + βM2|y(t)− y0(t)|

×
∫ φ−1

3 (φ−1
3 (t))

φ−1
3 (t)

b2(l)dl
b2(φ

−1
3 (t))

1− τ̇3(φ
−1
3 (t))

− βM2b2(t)

∫ φ−1
3 (t)

t
b2(l)dl |y(φ3(t))− y0(φ3(t))|.

(15)
Define the Lyapunov functional by

V (t) = V1(t) + V2(t) + V3(t),

then

D+V (t) = D+V1(t) + V ′
2(t) + V ′

3(t). (16)

Substituting (13)-(15) into (16), we obtain

D+V (t)|(1)
6
[
β c2(t)M

m−1
2 − αb1(t)

]
|x(t)− x0(t)| − βb2(t)

× |y(t)− y0(t)| − βM3c2(t)|ym−1(t)− ym−1
0 (t)|

−βM6M3b2(t)

∫ t

φ3(t)
c2(s)|ym−1(s)− ym−1

0 (s)|ds

+
αc1(φ

−1
2 (t))

1− τ̇2(φ
−1
2 (t))

|ym(t)− ym0 (t)|+ α[a1(t)

+M1b1(t) +Mm
2 c1(t)]

∫ φ−1
1 (t)

t
b1(l)dl |x(t)− x0(t)|

+ β
[
a2(t) +M2b2(t) +M1M

m−1
6 c2(t)

]
×
∫ φ−1

3 (t)

t
b2(l)dl |y(t)− y0(t)|+ βM2M

m−1
6 c2(t)

×
∫ φ−1

3 (t)

t
b2(l)dl |x(t)− x0(t)|+

αM1b1(φ
−1
2 (t))

1− τ̇2(φ
−1
2 (t))

×
∫ φ−1

1 (φ−1
2 (t))

φ−1
2 (t)

b1(l)dl[|x(t)− x0(t)|+ c1(φ
−1
2 (t))

× |ym(t)− ym0 (t)|] + βM2

∫ φ−1
3 (φ−1

3 (t))

φ−1
3 (t)

b2(l)dl

× b2(φ
−1
3 (t))

1− τ̇3(φ
−1
3 (t))

|y(t)− y0(t)|

6−
[
αb1(t)− β c2(t)M

m−1
2 − α

(
a1(t) +M1b1(t)

+Mm
2 c1(t)

)∫ φ−1
1 (t)

t
b1(l)dl − βM2M

m−1
6 c2(t)

×
∫ φ−1

3 (t)

t
b2(l)dl − αM1

b1(φ
−1
2 (t))

1− τ̇2(φ
−1
2 (t))

×
∫ φ−1

1 (φ−1
2 (t))

φ−1
2 (t)

b1(l)dl

]
|x(t)− x0(t)| − β

[
b2(t)

−
(
a2(t) +M2b2(t) +

M1c2(t)

M1−m
6

)∫ φ−1
3 (t)

t
b2(l)dl

−M2b2(φ
−1
3 (t))

1− τ̇3(φ
−1
3 (t))

∫ φ−1
3 (φ−1

3 (t))

φ−1
3 (t)

b2(l)dl

]
|y(t)− y0(t)|

−βM3c2(t)|ym−1(t)− ym−1
0 (t)|+ αc1(φ

−1
2 (t))

1− τ̇2(φ
−1
2 (t))

×

[
1 +M1b1(φ

−1
2 (t))

∫ φ−1
1 (φ−1

2 (t))

φ−1
2 (t)

b1(l)dl

]
× |ym(t)− ym0 (t)|.

(17)
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In view of

a|am−1 − bm−1| > | am − bm| − bm−1 |b− a|

for a > 0, b > 0, which yields

− βM3c2(t)|ym−1(t)− ym−1
0 (t)|

6βM3M
m−2
6 c2(t)|y(t)− y0(t)|

− βM3c2(t)

M2
|ym(t)− ym0 (t)|.

(18)

Thus, combination of (18) and (17) yields

D+V (t) 6− C1(t)|x(t)− x0(t)| − βC2(t)

×|y(t)−y0(t)| − C3(t)|ym(t)− ym0 (t)|,

which together with [A1] and [A2] yield there must
exist three positive constants λ1, λ2 and λ3 such that

D+V (t) 6− λ1 |x(t)− x0(t)| − λ2 | y(t)− y0(t)|
− λ3 | ym(t)− ym0 (t)|

for t > T . Thus, V (t) is non-increasing on [0,+∞).
Integrating the above inequality from T to t we obtain

λ1

∫ t

T
|x(t)− x0(t)|dt+ λ2

∫ t

T
| y(t)− y0(t)| dt

+ λ3

∫ t

T
| ym(t)− ym0 (t)| dt < +∞ for t > T.

By Barbalat’s Lemma [27], we get the result. ⊓⊔

Theorem 11 Assume that all conditions in Theorem 7
and [A1] hold, and further assume that there exist mu-
tual prime positive integers p, q with p > q such that
[A3]: m = q

p and [A4]: There exist positive constants
α and β such that lim inft→+∞{C1(t), B(t)} > 0,
where

B(t) :=βB1(t)

p∑
i=1

u
i−1
p v

p−i
p −B2(t)

q∑
i=1

u
i−1
p v

q−i
p ,

with M6 6 u, v 6M2,

B1(t) = b2(t) +M3M
m−2
2 c2(t)− (a2(t) +M2b2(t)

+M1M
m−1
6 c2(t))

∫ φ−1
3 (t)

t
b2(l)dl

−M2
b2(φ

−1
3 (t))

1− τ̇3(φ
−1
3 (t))

∫ φ−1
3 (φ−1

3 (t))

φ−1
3 (t)

b2(l)dl,

B2(t) =
βM3c2(t)

M6
+

αc1(φ
−1
2 (t))

1− τ̇2(φ
−1
2 (t))

×

(
1 +M1b1(φ

−1
2 (t))

∫ φ−1
1 (φ−1

2 (t))

φ−1
2 (t)

b1(l)dl

)
,

where C1(t) is defined in Theorem 10, M2, M6 is de-
fined in the proof of Theorem 7 Then model (1) is glob-
ally attractive.

Proof: One see

a|am−1 − bm−1| > bm−1 |b− a| − | am − bm|

for a > 0, b > 0, thus

− βM3c2(t)|ym−1(t)− ym−1
0 (t)|

6βM3c2(t)

M6
|ym(t)− ym0 (t)|

− βM3c2(t)M
m−2
2 (t)|y(t)− y0(t)|.

(19)

Substituting (19) into (17), one has

D+V (t) 6 −C1(t)|x(t)− x0(t)| − βB1(t)

×|y(t)− y0(t)|+B2(t)|ym(t)− ym0 (t)|.
(20)

Assumption [A3] yields

y(t)− y0(t) =

[
y

1
p (t)− y

1
p

0 (t)

] p∑
i=1

y
i−1
p (t)y

p−i
p

0 (t),

ym(t)− ym0 (t) =

[
y

1
p (t)− y

1
p

0 (t)

] q∑
i=1

y
i−1
p (t)y

q−i
p

0 (t),

which together with (20) give

D+V (t)

6− C1(t)|x(t)− x0(t)| − w(t)

∣∣∣∣y 1
p (t)− y

1
p

0 (t)

∣∣∣∣ ,
where

w(t) =βB1(t)

p∑
i=1

y
i−1
p (t)y

p−i
p

0 (t)

−B2(t)

q∑
i=1

y
i−1
p (t)y

q−i
p

0 (t),

which together with assumption [A4] implies

lim
t→+∞

|x(t)− x0(t)| = lim
t→+∞

∣∣∣∣y 1
p (t)− y

1
p

0 (t)

∣∣∣∣ = 0.

⊓⊔

Remark 12 Compare Theorem 10 with Theorem 11,
we find that the assumptions in the former is more
simple than those in the later. But we will show
that the assumptions in Theorem 11 is more weak
than Theorem 10. In fact, if q = 1, then B(t) =

βB1(t)
∑p

i=1 u
i−1
p v

p−i
p −B2(t) > p βM

p−1
p

6 B1(t)−
B2(t), which is more simpler than that of q ̸= 1, and
thus can be checked easily.
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If τi(t) = τi > 0, i = 1, 2, 3, that is, system (1)
reduces to the following system:

ẋ(t) =x(t)(a1(t)− b1(t)x(t− τ1)

− c1(t)y
m(t− τ2)),

ẏ(t) = y(t)(−a2(t)− b2(t)y(t− τ3)

+ c2(t)x(t)y
m−1(t)),

(21)

then corresponding to Theorems 10-11 we get the fol-
lowing results.

Theorem 13 Assume all conditions in Theorem 7
hold, and there exist positive constants α, β such that
lim inf

t→+∞
{Ci(t), i = 4, 5, 6} > 0, where

C4(t) =αb1(t)− β c2(t)M
m−1
2 − α(a1(t) +M1b1(t)

+Mm
2 c1(t))

∫ t+τ1

t
b1(l)dl − βM2M

m−1
6 c2(t)

×
∫ t+τ3

t
b2(l)dl − αM1b1(t+ τ2)

∫ t+τ1+τ2

t+τ2

b1(l)dl,

C5(t) = b2(t)−M3M
m−2
6 c2(t)−M2b2(t+ τ3)

×
∫ t+2τ3

t+τ3

b2(l)dl − (a2(t) +M2b2(t)

+M1M
m−1
6 c2(t))

∫ t+τ3

t
b2(l)dl,

C6(t) =
βM3c2(t)

M2
− αc1(t+ τ2)

×
(
1 +M1b1(t+ τ2)

∫ t+τ1+τ2

t+τ2

b1(l)dl

)
.

Then model (21) is globally attractive.

Theorem 14 Assume that all conditions in Theorem
7 and [A1] hold, and there exist mutual prime pos-
itive integers p, q with p > q such that [A3] hold,
and there exist positive constants α and β such that
lim inft→+∞{C4(t), B0(t)} > 0, where

B0(t) =βB3(t)

p∑
i=1

u
i−1
p v

p−i
p −B4(t)

q∑
i=1

u
i−1
p v

q−i
p ,

M6 6 u, v 6M2,

B3(t) = b2(t) +M3M
m−2
2 c2(t)−M2b2(t+ τ3)

×
∫ t+2τ3

t+τ3

b2(l)dl − (2(t) +M2b2(t)

+M1M
m−1
6 c2(t))

∫ t+τ3

t
b2(l)dl,

B4(t) =
βM3c2(t)

M6
+ αc1(t+ τ2)

×
(
1 +M1b1(t+ τ2)

∫ t+τ1+τ2

t+τ2

b1(l)dl

)
.

Then model (21) is globally attractive.

Corollary 15 Assume that all conditions in Theorem
7 and [A1] hold, and further assume that there exists
a positive integer p with p > 1 such that m = 1

p , and
there exist positive constants α and β such that

lim inf
t→+∞

{C4(t), B0(t)} > 0,

where B0(t) := p βM
p−1
p

6 B3(t)−B4(t). Then model
(21) is globally attractive.

4 Application and simulation

Example: Let

a1(t) = 12 + 0.01 sin t, a2(t) = 5− 0.01 sin t,

b1(t) = 6, b2(t) = 3.4, c1(t) = 0.3 + 0.29 sin t,

c2(t) = 1.2 + 0.1 sin t, τ1 = 0.005, τ2 = 0.03,

τ3 = 0, m = 1/3.

Choose ε0 = ε1 = 1 × 10−10, ε2 = ε3 = 2 ×
10−10, α = 1.2, β = 0.005.

By calculating we obtain

M1 = 2.062627, M2 = 0.3939083, K1 = 11.5775,

M3 = 1.921898, K2 = −1.07577, K3 = 1.394411,

M4 = −0.316404, M5 = 0.146835, M6 = 0.146835,

lim inf
t→+∞

C4(t) = 5.84892, lim inf
t→+∞

C5(t) = −58.1291,

lim inf
t→+∞

C6(t) = 0.939147, lim inf
t→+∞

B0(t) = 0.082385.

According to Theorems 7,10, this system is uni-
formly persistent and has 2π-periodic positive solu-
tion. Meanwhile, according to Corollary 15 we assert
that the system is globally attractive, see Figs.1-2 for
more details.

Remark 16 Example shows that lim inf
t→+∞

B0(t) > 0 is

weak than lim inf
t→+∞

{C5(t), C6(t)} > 0, which verifies

Remark 12.

Remark 17 Obviously, ifm = 1, then there is no mu-
tual inference between preys and predators, then from
Figs.3-4. one can easily see that the prey is uniform-
ly persistent but the predator is extinct eventually. So
the mutual interference can effect the population of
the prey and predator. In the real world we must con-
sider some PP models under the influence of mutual
interference.
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Fig.1. The integral curves of example with m = 1/3.
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Fig.2. The integral curves of example with m = 1/3.
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Fig.3. The integral curves of example with m = 1.
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Fig.4. The integral curves of example with m = 1.
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